A Family of Smooth Quasi-interpolants Defined Over Powell–Sabin Triangulations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A family of smooth quasi-interpolants defined over Powell-Sabin triangulations

We investigate the construction of local quasi-interpolation schemes for a family of bivariate spline functions with smoothness r ≥ 1 and polynomial degree 3r−1. These splines are defined on triangulations with Powell-Sabin refinement, and they can be represented in terms of locally supported basis functions which form a convex partition of unity. Using the blossoming technique, we first derive...

متن کامل

Construction of normalized B-splines for a family of smooth spline spaces over Powell-Sabin triangulations

We construct a suitable B-spline representation for a family of bivariate spline functions with smoothness r ≥ 1 and polynomial degree 3r − 1. They are defined on a triangulation with PowellSabin refinement. The basis functions have a local support, they are nonnegative and they form a partition of unity. The construction involves the determination of triangles that must contain a specific set ...

متن کامل

Weierstrass quasi-interpolants

In this paper, the expression of Weierstrass operators as differential operators on polynomials is used for the construction of associated quasi-interpolants. Then the convergence properties of these operators are studied. AMS Classification: 41A35.

متن کامل

Approximation Order without Quasi-Interpolants

In the study of approximation order, particularly in a multivariable setting, quasi-interpolants have played a major role. This report points out some limitations of quasi-interpolants and describes some recent results on approximation order obtained without the benefit of the quasi-interpolant idea. §1. Approximation Order In most general terms, “approximation order” is defined as follows. Def...

متن کامل

Quasi - interpolants Based on Trigonometric

A general theory of quasi-interpolants based on trigonometric splines is developed which is analogous to the polynomial spline case. The aim is to construct quasi-interpolants which are local, easy to compute, and which apply to a wide class of functions. As examples, we give a detailed treatment including error bounds for two classes which are especially useful in practice.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive Approximation

سال: 2014

ISSN: 0176-4276,1432-0940

DOI: 10.1007/s00365-014-9248-0